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Simulation of quantum systems is notoriously challenging for classical computers, while quantum
computers are naturally well-suited for this task. However, the imperfections of contemporary
quantum computers pose a considerable challenge in carrying out accurate simulations over long
evolution times. Here we experimentally demonstrate a method for quantum simulations on a
small-scale trapped ions-based quantum computer. Our method enables quantum simulations of
programmable spin-Hamiltonians, using only simple global fields, driving all qubits homogeneously
and simultaneously. We measure the evolution of a quantum Ising ring and accurately reconstruct
the Hamiltonian parameters, showcasing an accurate and high-fidelity simulation. Our method
enables a significant reduction in the required control and depth of quantum simulations, thus
generating longer evolution times with higher accuracy.

Quantum simulators are controllable quantum systems
that enable the study of phases, dynamics, and prop-
erties of complex quantum systems, for which an ana-
lytical or numerical treatment is challenging [1]. Quan-
tum simulations are considered a suitable task for noisy
intermediate scale quantum (NISQ) computers [2], cur-
rently available. Indeed, recent years have seen numer-
ous implementations of quantum simulations on several
computing platforms [3–5], which are performed with an
ever-increasing quality, approaching an advantage over
classical methods [6]. An apparent challenge to NISQ-
era computers is to perform large-scale quantum simu-
lations, with a relatively shallow circuit depth, i.e. with
few operations, in order to avoid the deterioration of the
simulation’s fidelity due to noise.

Ion-crystals trapped in radio frequency (RF) traps are
an especially prolific tool for quantum simulations [7–
16], due to their long coherence times [17], high-fidelity
control [18–21] and rich connectivity [22–25]. By exploit-
ing the long-range coupling between all ions in the ion-
crystal, it is possible to perform simultaneous entangle-
ment of many ions in the crystal, potentially increasing
the efficacy of the simulation.

Here we experimentally implement quantum simula-
tions of the Ising-spin model on a small-scale trapped
ions quantum computer [26]. We evolve our system us-
ing global pulses, that drive the ions homogeneously,
and nevertheless generate a desired inhomogeneous pro-
grammable interaction in each pulse, which is uncon-
strained by the one-dimensional (1D) linear geometry of
the ion-chain. This is enabled by purposefully and simul-
taneously coupling to all modes of motion of the trapped
ions crystal, in a controllable manner. We are able to
simulate spin-Hamiltonians of the form,

H =

N∑
n,m=1

Jn,mσ
(n)
x σ(m)

x , (1)

with σ
(n)
x a Pauli-x operator acting on the nth spin of aN
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FIG. 1. Simulating spin-Ising Hamiltonians with trapped ions
using a homogeneous drive. An ion chain (left) is driven by
an approximately homogeneous drive, that has spectral con-
tents overlapping the motional sidebands of the ion crystal,
shown pictorially (bottom left). The motional modes gen-
erate tunable all-to-all couplings between all ions (e.g. the
green arrows). By taking advantage of the motional mode
structure the drive is mapped to a programmable Ising spin
Hamiltonian (right). Here specifically we highlight a 4-spin
ring that utilizes the inherent long-range coupling of the ions
in order to generate anti-periodic boundary conditions, that
are unconstrained by the linear geometry of the ion-crystal.

site spin system, and Jn,m an experimentally controllable
coupling matrix. This implements an Ising-spin model.
Figure 1 pictorially presents our mapping from driving
an ion-crystal to a simulation of an Ising-spin model.
With global methods that are straightforward in

trapped ions systems, we extend this interaction to ac-

commodate for a transverse field, δ
∑N

n=1 σ
(n)
z . Similarly,

we can add σ
(n)
y σ

(m)
y terms, that may differ in their cou-

pling matrix, compared to the coupling in Eq (1).
Our method takes into account and mitigates un-

wanted inhomogeneous aberrations due to, e.g. finite
driving beam waist. Furthermore, while all modes of
motion of the ion-crystal may be used, here we explic-
itly decouple from the center-of-mass mode as it is more
prone to heating and decoherence, without affecting our
method’s programmability, thus improving the simula-

ar
X

iv
:2

30
8.

16
03

6v
1 

 [
qu

an
t-

ph
] 

 3
0 

A
ug

 2
02

3



2

tion’s fidelity.
We simulate a 4-ions Ising-spin quantum ring and ob-

serve dynamics under its Hamiltonian. We supplement
this model with a transverse field, such that the resulting
evolution is purely quantum mechanical, and observe the
dynamics as a function of the transverse field magnitude.

Below we analyze these results in full, and are able
to accurately reconstruct both the Ising coupling terms,
Jn,m, as well as the various transverse fields, δ, showcas-
ing an accurate realization of quantum simulations using
our method.

The theoretical proposal underpinning our work has
been proposed in Refs. [22, 23]. Here we provide the
relevant physical picture and crucial details. In trapped-
ions-based quantum computers, entanglement between
qubits is typically generated by spin-dependent forces,
which mediate spin-spin interactions through the collec-
tive phonon modes of motion of the ion-crystal. Con-
ventionally only two ions are driven and coupled to a
single phonon mode, such as in the Mølmer-Sørensen
(MS) gate [27, 28], generating an evolution of the form

UMS = exp
(
iΦσ

(n)
x σ

(m)
x

)
, with n and m the indices of

the two entangled ions and Φ a controllable entanglement
phase.

This method is generalized by homogeneously driving
all of the N ions in the ion-crystal, purposefully coupling
to N modes of motion along a motional axis of the ion-
crystal. We have shown in Ref. [22] that such a drive
can yield the evolution,

U = exp

i N∑
j=1

Φj

N∑
n,m=1

O
(n)
j O

(m)
j σ(n)

x σ(m)
x

 , (2)

with the {Φj}Nj=1 completely controllable mode-

dependent entanglement phase, and O an orthonormal

mode-matrix, i.e O
(n)
j is the normalized participation of

the nth ion in the jth mode of motion [29].
We remark that the mapping between the Φj ’s and

the drive waveform that generates them involves solving
a NP-hard optimization problem. In a different work we
have presented a method for mitigating the hardness of
this optimization problem [23]. Here however the opti-
mization is circumvented by operating in a relevant adi-
abatic regime, detailed below.

Due to the orthonormality of O, shifting all Φjs by a
constant, i.e. Φj 7→ Φj + ϕ, amounts to modifying U
in Eq. (2) by a global phase, i.e. U 7→ eiϕU . Here
we exploit this property in order to set Φj=1 = 0, and
adjust all the other Φjs appropriately. This is helpful as
the j = 1 mode is a center-of-mass mode, which typically
exhibits the fastest heating and decoherence rate. Thus,
we are able to decouple from the center-of-mass mode
completely, yielding longer coherence times and higher
simulation fidelity.

Furthermore, we note that any inhomogeneity in the
field driving the ions, e.g. due to a finite beam waist of
an optical drive, can be taken into account by adjusting

O accordingly, thus enabling the mitigation of unwanted
inhomogeneous effects.
In practice, in our setup the laser intensity is limited

such that any single frequency can, at most, couple signif-
icantly to only a single mode of motion. In this low-power
limit the gate operates in the adiabatic regime and the
mapping between the desired entanglement phases and
the corresponding drive is simple, relaxing the NP-hard
problem described in Ref. [22].
Specifically, we drive two frequency pairs per mo-

tional mode, with the frequencies, ω0 ± (νj + ξ) and
ω0 ± (νj + 3ξ), with ω0 the single-qubit transition fre-
quency, νj the frequency of the jth mode of motion and
ξ a detuning determined below. The amplitude of both
frequency pairs is equal and their phases are opposite.
Following Ref. [30], these choices generate a robust gate
that can be driven faster than the typical MS gate, as
it reduces coupling to unwanted transitions such as off-
resonance coupling to the carrier transition. Further-
more, the choice 3ξ (as opposed to, e.g. 2ξ) mitigates
unwanted non-linear technical responses which may oc-
cur at the various hardware generating the laser’s spec-
trum [31].
With these choices, we make use of consecutive imple-

mentations of U in Eq. (2), such that the ion’s evo-
lution, at integers multiples of 2πξ−1, evolves strobo-
scopically according to the Hamiltonian in Eq. (1), with

Jn,m ∝
∑N

j=1

η2
j r

2
j

ξ O
(n)
j O

(m)
j , such that ηj is the Lamb-

Dicke parameter of the jth mode of motion, driven by
the two-tone pairs described above, with a relative am-
plitude rj . The proportionality constant accommodates
for the laser’s total Rabi frequency, Ω0, and additional
(mode and ion independent) numerical factors [23].

The Pauli-x rotations, i.e. σ
(n)
x , in Eq. (2) can be

trivially generalized to σ
(n)
ϕ = cos (ϕ)σ

(n)
x + sin (ϕ)σ

(n)
y ,

with ϕ fully controllable, by equally shifting the average
phase of all the frequency pairs constituting the drive
by ϕ. The choice of ϕ, as well as all other drive pa-
rameters, i.e. the Φjs and ξ can be changed at each
consecutive implementation of U . Combined with the
well-known Suzuki-Trotter decomposition [32, 33], this
accommodates for various spin-Hamiltonians, e.g.

H =

N∑
n,m=1

[
J (x)
n,mσ

(n)
x σ(m)

x + J (y)
n,mσ

(n)
y σ(m)

y

]
+ δ

N∑
n=1

σ(n)
z ,

(3)

with J
(x)
n,m and J

(y)
n,m controllable couplings and δ a con-

trollable transverse field. The σ
(n)
y terms are generated

by a π/2 jump in ϕ, while the transverse σ
(n)
z terms are

generated by a gradual linear ramp of ϕ in each consec-
utive Suzuki-Trotter block.
The general Hamiltonian in Eq. (3), as well as more

elaborate, e.g. time-dependent Hamiltonians, are all
made possible without breaking the global-drive assump-
tion. We remark that H commutes with the parity op-

erator P = exp
(
iπ

∑N
n=1 σ

(n)
z

)
, thus states with well-
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FIG. 2. Excitation subspace dynamics of the four site anti-
periodic Ising-spin ring. Populations are measured at in-
teger, up to ten, consecutive implementations of U (points
connected by lines) as well as half-integer multiples (small
points), and grouped into excitation subspaces. The theo-
retical prediction (dashed) shows a good agreement with the
data. The system exhibits dynamics in even-excitation sub-
spaces (green, orange, and blue), with a steady linear rise of
population in odd-excitation subspaces (brown and red) due
to experimental imperfections. Error bars reflect ±2σ sta-
tistical errors due to quantum shot noise. Below we study
further the system’s state at an early evolution time (vertical
dashed gray line).

defined parity, e.g. superpositions of states with an even
number of spin-excitations, will remain with the same
parity throughout their evolution.

We experimentally implement quantum simulations
on a small-scale trapped-ions quantum computer [26],

in which the
∣∣∣5S 1

2 ,
1
2

〉
(
∣∣∣4D 5

2 ,
3
2

〉
) states of 88Sr+ ions

are mapped to |0⟩ (|1⟩) qubit levels. These levels are
coupled, using a quadrupole transition, by a 674 nm
narrow linewidth laser [34], illuminating the ions ap-
proximately homogeneously with a wide global beam.
We modulate the 674 nm beam appropriately such
that it has a rich spectrum, containing the frequency

pairs, {ω0 ± ωm}Mm=1, with ω0 the |0⟩ ↔ |1⟩ transition
frequency. This pairwise driving generates the spin-
dependent forces, driving the modes of motion of the ion-
crystal, and mediating the entangling interaction [22, 23].

We start by investigating dynamics under a 4-site spin
ring, with anti-periodic boundary conditions, i.e. the
nearest-neighbor (n.n) Hamiltonian,

Hring,a.p = Ω
(
σ(1)
x σ(2)

x + σ(2)
x σ(3)

x + σ(3)
x σ(4)

x − σ(4)
x σ(1)

x

)
+ δ

4∑
n=1

σ(n)
z ,

(4)

with ’anti-periodicity’ manifested as the negative sign of

the σ
(4)
x σ

(1)
x coupling term. As we show below, Hring,a.p

can be well-approximated by the axial modes of motion
of our harmonic ion-trap, with the choice {Φj}4j=1 ≈
{0, 0.3867,−0.7071,−1.0939}.

We first benchmark our simulation with δ = 0. To do

FIG. 3. Dynamics in post-selected 2 excitation subspace of a
four-site anti-periodic Ising-spin ring (data and theory marked
as in Fig. 2). A significant part of the evolution involves states
that are nn in the model, i.e. the states |1100⟩ (cyan), |0110⟩
(orange), |0011⟩ (olive) and |1001⟩ (purple), with the latter
manifested by ions which are at the two opposite edges of
the ion-crystal. States that occupy nnn are significantly less
populated throughout the evolution (red and brown). Error
bars reflect ±2σ statistical errors due to quantum shot noise.

so we initialize the system to the ground state, |0000⟩, al-
low it to evolve under Hring,a.p, and measure the popula-
tion at the different spin states. Figure 2 shows the state
occupations after such an evolution, with the spin pop-
ulations grouped in terms of their respective excitation
subspaces (ES), i.e. the number of excitations in each
state. Data (points connected by lines) is accompanied
by the theoretical expectation (dashed) showing a good
agreement. We sample the evolution stroboscopically,
at integer multiples of U (points connected by solid) as
well as at half-integer multiples of U (small unconnected
points). Error bars reflect ±2σ statistical errors due to
quantum shot noise. Here and in the measurements be-
low we use ξ = 7.5 kHz.

Since the initial state (green) is in an even ES, we ex-
pect the system to only populate even ESs. Indeed we
observe significant dynamics in the 2-ES (orange) and 4-
ES (blue) subspaces. In addition, we note a small linear
build-up of the population in the odd 1-ES (red) and 3-
ES (brown), which is due to dephasing and experimental
imperfections. Furthermore, we note that at half-integer
multiples of U the populations in the odd ESs are signifi-
cant even at small times, as these subspaces are essential
in the dynamics in non-stroboscopic times [28].

A clear picture of the dynamics emerges by consid-
ering independently all the states in the 2-ES. Indeed
Fig. 3 shows the evolution in these states. As we expect
our models to conserve parity, we post-select our mea-
sured data by ignoring measurement results occupying
odd ESs and renormalizing the recurrence of the remain-
ing measured states. The dynamics show that the initial
buildup of the population in the 2-ES is, in fact, domi-
nated by states which are n.n in the spin-ring, i.e. the
states |1100⟩ (cyan), |0110⟩ (orange), |0011⟩ (olive) and
|1001⟩ (purple), with the latter manifested by ions which
are at the two opposite edges of the ion-crystal. Similarly,
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states that occupy next-nearest-neighbor (n.n.n) sites,
i.e. |1010⟩ (red) and |0101⟩ (brown), are only slightly
populated at longer evolution times.

We quantify the simulation’s performance by perform-
ing parity measurements. We do so by evolving the sys-
tem for some small evolution time, tparity = 3 2π

ξ (vertical

dashed gray in Fig. 3), corresponding to three consecu-
tive implementations of U , and then performing a global
π/2-pulse with phase ϕ. That is, the system evolves ac-
cording to,

Uparity = e
i
2

π
2

∑N
n=1 σ

(n)
ϕ U3 |0000⟩ , (5)

after which we measure state occupations and evalu-

ate the bipartite-parity, ⟨σ(n)
z σ

(m)
z ⟩. This process gen-

erates the measurement of the correlation, Cn,m (ϕ) =〈
ψ (t)

∣∣∣σ(n)
ϕ σ

(m)
ϕ

∣∣∣ψ(t)〉. The results of these measure-

ments, for various rotation phases, ϕ, are shown in Fig.
4 (top). Similarly to the above, we note that sites that are
n.n on the spin-ring (cyan, orange, olive, and purple) ex-
hibit high-contrast parity fringes, while n.n.n sites (red,
brown) do not. Furthermore C1,4 (purple) exhibits an
oscillation phase which is opposite to all others, due to
its negative coupling.

To analyze the data further we use a single-parameter
fit for each parity fringe shown in Fig. 4 as Cn,m (ϕ) ≃
J reconstructed
n,m sin (2ϕ), showing a good fit (dashed). The

resulting values of J reconstructed
n,m are presented in Fig. 4

(bottom, right), along with the ideal values of J ideal
n,m (bot-

tom, left) which are directly read-off the model’s Hamil-
tonian Eq. (4), as well as the expected values of the
implemented model, Jexpected

n,m (bottom, center), originat-
ing from our estimation of the system’s modes of motion
[29] and our drive’s parameters (middle). The three cou-
pling matrices are in good agreement. There is a slight
deviation between the ideal (left) and expected (middle)
matrices in J2,3 = J3,2 and J1,4 = J4,1. We remark
that Jexpected

n,m is used to generate the theoretical expec-
tations of Figs. 2 and 3, scaled appropriately such that,∣∣Jexpected

n,m

∣∣ e−tparity/T2 =
∣∣J reconstructed

n,m

∣∣, with T2 out sys-
tem’s coherence time.

We heuristically quantify our ability to realize
this specific model by constructing an overlap be-
tween coupling matrices, F (Jn,m, Sn,m) ≡ J ·
S/

√
(J · J) (S · S), with J,S being 6-element real vec-

tors constructed from the upper triangular entries of
the coupling matrices (excluding the trivial diagonal).
This overlap yields F

(
J ideal
n,m , Jexpected

n,m

)
= 0.985 and

F
(
Jexpected
n,m , J reconstructed

n,m

)
= 0.993, indeed verifying a

high-quality implementation of the intended ring model.
We now turn to study the effects of the transverse field,

δ, in the ring Hamiltonian in Eq. (4). This term gener-
ates a global σz coupling which does not commute with
the Ising n.n interaction.
At high transverse field value, i.e. δ/Ω ≫ 1 the initial

state, |0000⟩ becomes an eigenstate. Thus, approaching
this limit, we expect an effective slowing down of the

FIG. 4. Pair parity oscillations between sites of the four-site
anti-periodic Ising-spin ring and coupling matrix reconstruc-

tion. Top: The correlation Cn,m = ⟨σ(n)
ϕ σ

(m)
ϕ ⟩ is evaluated

between different pairs of the system, at various values of
ϕ, after a small evolution time tparity = 6πξ−1. We observe
high-contrast oscillations between sites that are nn, and low-
contrast oscillations between sites that are nnn. The anti-
periodic negative coupling of σ

(1)
x σ

(4)
x in Eq. (4), is manifested

as an opposite phase fringe of C1,4 (purple) compared to all
others. Error bars reflect ±2σ statistical errors due to quan-
tum shot noise. Data (points connected by lines) is fitted to
a single oscillating sine (dashed) showing a good fit. Bottom:
coupling matrices, Jn,m, of the four-site anti-periodic Ising-
spin ring. Showing its ideal values (left) read-off the model’s
Hamiltonian in Eq. (4), the expected values (middle) due to
a global drive implementation, and the reconstructed values
(right), using the parity fits (top). The matrices are normal-
ized such that the largest entry in each of them is 1 (arbitrary
units).

observed dynamics. We quantify an effective coupling,
Ω̃, from our measurements above as the average observed
nn coupling (in absolute value), i.e.

Ω̃t =
1

4

4∑
n=1

|J reconstructed
n,n+1 |, (6)

with 4 + 1 7→ 1. Figure 5, shows the post-selected pop-
ulations in even excitation subspaces (points connected

by lines), for various choices of δ/Ω̃ (color bars). Indeed,
the ground state population (green lines) remains more
populated throughout the observed dynamics for larger
values (brighter) of δ/Ω̃, while two excitations (orange)
and four excitations (blue) become less frequent.
To analyze the data further, and benchmark our sim-

ulation, we consider the population in the ground state,
Pr (0000), after two consecutive applications of U in Eq.
(2) and a single application of the transverse field term
(dashed gray line). We heuristically model the expected
system excitations using the well-known formula for off-
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FIG. 5. Dynamics of a four-site anti-periodic Ising-spin ring,
with an on-site homogeneous transverse field. We prepare
the state |0000⟩ and evolve it under the system’s Hamilto-
nian. Populations of the various system states are measured
at different evolution times (points) and grouped according
to the number of excitations, with no excitation (green), two
excitations (red) and four excitations (blue). We repeat this
measurement for various ratios of transverse field to Ising-type
nearest neighbor coupling, δ/Ω̃ (color bars). For large trans-
verse fields the initial state becomes an eigenstate, leading to
a suppression of dynamics. Error bars reflect 2σ errors due
to quantum shot noise. Inset: Measured ground state popu-
lation (blue) after a short evolution time, t = 4πξ−1 (dashed
vertical grey), compared to the prediction of Eq. (7) (grey),
showing a good fit.

resonance Rabi oscillations, 1

1+ δ2

Ω2
0

sin2
(

1
2Ω0t

√
1 + δ2

Ω2
0

)
,

at time t coupled by a Rabi frequency Ω0 which is de-
tuned by δ. Here we replace Ω0 7→ 4Ω̃ as there are four
relevant states in the two excitations subspace. Further-
more, as we have used 2 applications of the Ising inter-
action and a single application of the transverse field, we
choose t = 3

2Ω
−1
0 . Thus we estimate,

1−Pr (0000) =
1

1 + δ2

(4Ω̃)
2

sin2

3Ω̃

√√√√1 +
δ2(
4Ω̃

)2

 . (7)

Figure 5 (inset) shows the measured ground state pop-

ulation (blue), extracted after the second application of
U . We also plot our estimate in Eq. (7) (grey) show-
ing a good fit. We remark that in order to account for
experimental imperfections, e.g. the system’s coherence,
we have scaled the expression of our estimate in Eq. (7)
such that it exactly matches our first data point at δ = 0,
with no other fitting parameters. Thus we are able to de-
duce the transverse field used in our realizations, over a
large range of values.

In conclusion, we have demonstrated a method for pro-
grammable quantum simulations of spin-Hamiltonians on
trapped-ion chains. The method, proposed in Ref. [22],
can be used to generate a variety of models and coupling
geometries, which are unconstrained by the physical re-
alization of the 1D linear ion-crystal. Here we employ it
to generate a 4-site anti-periodic Ising-spin ring. We use
population and correlation data in order to benchmark
our simulation. Indeed we reconstruct the applied cou-
plings and transverse field, showing a faithful generation
of the intended model. This method is well-suited for
NISQ-era quantum systems as it can be used to leverage
typical shallow circuits yet still generate long evolution
times of relevant quantum systems.

During the preparation of this manuscript we became
aware of a similar work by Wu et al. [16], which uses
similar techniques in order to implement similar Ising
models.
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X. Mi, S. Boixo, and V. Smelyanskiy, Effective quantum
volume, fidelity and computational cost of noisy quantum
processing experiments (2023), arXiv:2306.15970 [quant-
ph].

[7] T. Manovitz, Y. Shapira, N. Akerman, A. Stern, and
R. Ozeri, Quantum simulations with complex geometries
and synthetic gauge fields in a trapped ion chain, PRX
Quantum 1, 020303 (2020).

[8] Y. Shapira, T. Manovitz, N. Akerman, A. Stern, and
R. Ozeri, Quantum simulations of interacting systems
with broken time-reversal symmetry, Phys. Rev. X 13,
021021 (2023).

[9] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K.
Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F.
Roos, et al., Self-verifying variational quantum simula-
tion of lattice models, Nature 569, 355 (2019).

[10] M. K. Joshi, F. Kranzl, A. Schuckert, I. Lovas, C. Maier,
R. Blatt, M. Knap, and C. F. Roos, Observing emergent
hydrodynamics in a long-range quantum magnet, Science
376, 720 (2022).

[11] W. L. Tan, P. Becker, F. Liu, G. Pagano, K. S. Collins,
A. De, L. Feng, H. B. Kaplan, A. Kyprianidis, R. Lund-
gren, W. Morong, S. Whitsitt, A. V. Gorshkov, and
C. Monroe, Domain-wall confinement and dynamics in
a quantum simulator, Nature Physics 17, 742 (2021).

[12] A. Kyprianidis, F. Machado, W. Morong, P. Becker, K. S.
Collins, D. V. Else, L. Feng, P. W. Hess, C. Nayak,
G. Pagano, et al., Observation of a prethermal discrete
time crystal, Science 372, 1192 (2021).

[13] M. Qiao, Z. Cai, Y. Wang, B. Du, N. Jin, W. Chen,
P. Wang, C. Luan, E. Gao, X. Sun, H. Tian, J. Zhang,
and K. Kim, Observing frustrated quantum mag-
netism in two-dimensional ion crystals, arXiv preprint
arXiv:2204.07283 10.48550/ARXIV.2204.07283 (2022).

[14] M. Iqbal, N. Tantivasadakarn, R. Verresen, S. L. Camp-
bell, J. M. Dreiling, C. Figgatt, J. P. Gaebler, J. Jo-
hansen, M. Mills, S. A. Moses, J. M. Pino, A. Ransford,
M. Rowe, P. Siegfried, R. P. Stutz, M. Foss-Feig, A. Vish-
wanath, and H. Dreyer, Creation of non-abelian topolog-
ical order and anyons on a trapped-ion processor (2023),
arXiv:2305.03766 [quant-ph].

[15] D. Porras and J. I. Cirac, Effective quantum spin systems
with trapped ions, Phys. Rev. Lett. 92, 207901 (2004).

[16] Q. Wu, Y. Shi, and J. Zhang, Qubits on programmable
geometries with a trapped-ion quantum processor (2023),
arXiv:2308.10179 [quant-ph].

[17] P. Wang, C.-Y. Luan, M. Qiao, M. Um, J. Zhang,
Y. Wang, X. Yuan, M. Gu, J. Zhang, and K. Kim, Single
ion qubit with estimated coherence time exceeding one

hour, Nature Communications 12, 233 (2021).
[18] J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler,

A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried,
and D. J. Wineland, High-fidelity universal gate set for
9Be

+
ion qubits, Phys. Rev. Lett. 117, 060505 (2016).

[19] C. R. Clark, H. N. Tinkey, B. C. Sawyer, A. M. Meier,
K. A. Burkhardt, C. M. Seck, C. M. Shappert, N. D.
Guise, C. E. Volin, S. D. Fallek, H. T. Hayden, W. G. Rel-
lergert, and K. R. Brown, High-fidelity bell-state prepa-
ration with 40ca+ optical qubits, Phys. Rev. Lett. 127,
130505 (2021).

[20] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol,
and D. M. Lucas, High-fidelity quantum logic gates us-
ing trapped-ion hyperfine qubits, Phys. Rev. Lett. 117,
060504 (2016).

[21] R. Srinivas, S. C. Burd, H. M. Knaack, R. T. Sutherland,
A. Kwiatkowski, S. Glancy, E. Knill, D. J. Wineland,
D. Leibfried, A. C. Wilson, D. T. C. Allcock, and
D. H. Slichter, High-fidelity laser-free universal control
of trapped ion qubits, Nature 597, 209 (2021).

[22] Y. Shapira, R. Shaniv, T. Manovitz, N. Akerman, L. Pe-
leg, L. Gazit, R. Ozeri, and A. Stern, Theory of robust
multiqubit nonadiabatic gates for trapped ions, Phys.
Rev. A 101, 032330 (2020).

[23] Y. Shapira, L. Peleg, D. Schwerdt, J. Nemirovsky, N. Ak-
erman, A. Stern, A. B. Kish, and R. Ozeri, Fast design
and scaling of multi-qubit gates in large-scale trapped-
ion quantum computers (2023), arXiv:2307.09566 [quant-
ph].
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